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Mammographic breast density can mask cancers at mam-
mography and is an independent risk factor for breast 

cancer (1–3). Legislation mandating patients be notified  
of mammographic breast density has passed in more 
than 30 states, and a federal bill is under consideration. 
Details of state legislation vary, but most states require 
direct reporting to the patient that breast density can 
mask cancers at mammography and that the patient 
may benefit from additional testing.

Qualitative assessment of mammographic breast 
density is subjective and varies widely between radiolo-
gists (4–10). In a study of 83 radiologists who assessed 
breast density, Sprague et al (4) found extreme variation 
in qualitative density assessment per the Breast Imaging 
Reporting and Data System (BI-RADS), with 6%–85% 
of mammograms assessed as either heterogeneously or ex-
tremely dense depending on radiologist interpretation. In 
a study of 34 radiologists, the intraradiologist agreement 
of density assessments among women who underwent 
two examinations varied from 62% to 87% (6).

Commercially available methods for automated as-
sessment of breast density do exist; however, they yield 
mixed results in agreement with expert qualitative den-
sity assessments, with k scores of 0.32–0.61 (11,12). 

These methods tend to result in over- or underreport-
ing of breast density when compared with qualitative 
assessment by radiologists (11,13). A recent study found 
significant differences in density assessments in the same 
4170 women with two software programs (Volpara, 
Volpara Solutions, Wellington, New Zealand; Quantra, 
Hologic, Bedford, Mass), with the software programs 
showing 37% and 51%, respectively, of women had 
dense breast tissue. In the same set of mammograms, 
radiologists determined 43% of the women had dense 
breast tissue (13).

Deep learning (DL) has been gaining traction in radi-
ology (12,14–17). Specifically, there has been preliminary 
work with DL methods to assess breast density (12,18); 
however, none of these techniques have been imple-
mented in clinical practice, raising questions about clini-
cal acceptance by practicing radiologists and the effect on 
patient care. In contrast, our purpose was to develop a 
DL algorithm we could use to reliably assess breast den-
sity and to measure the acceptance of its predictions in 
real-time clinical practice. We hypothesize that DL mod-
els can be applied to assess breast density at the same level 
as experienced breast imagers and that they can be ac-
cepted into routine clinical practice.
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Purpose:  To develop a deep learning (DL) algorithm to assess mammographic breast density.

Materials and Methods:  In this retrospective study, a deep convolutional neural network was trained to assess Breast Imaging 
Reporting and Data System (BI-RADS) breast density based on the original interpretation by an experienced radiologist of 41 479 
digital screening mammograms obtained in 27 684 women from January 2009 to May 2011. The resulting algorithm was tested 
on a held-out test set of 8677 mammograms in 5741 women. In addition, five radiologists performed a reader study on 500 mam-
mograms randomly selected from the test set. Finally, the algorithm was implemented in routine clinical practice, where eight radi-
ologists reviewed 10 763 consecutive mammograms assessed with the model. Agreement on BI-RADS category for the DL model 
and for three sets of readings—(a) radiologists in the test set, (b) radiologists working in consensus in the reader study set, and (c) 
radiologists in the clinical implementation set—were estimated with linear-weighted k statistics and were compared across 5000 
bootstrap samples to assess significance.

Results:  The DL model showed good agreement with radiologists in the test set (k = 0.67; 95% confidence interval [CI]: 0.66, 
0.68) and with radiologists in consensus in the reader study set (k = 0.78; 95% CI: 0.73, 0.82). There was very good agreement  
(k = 0.85; 95% CI: 0.84, 0.86) with radiologists in the clinical implementation set; for binary categorization of dense or nondense 
breasts, 10 149 of 10 763 (94%; 95% CI: 94%, 95%) DL assessments were accepted by the interpreting radiologist.

Conclusion:  This DL model can be used to assess mammographic breast density at the level of an experienced mammographer.

© RSNA, 2018

Online supplemental material is available for this article.

This copy is for personal use only. To order printed copies, contact reprints@rsna.org



Lehman et al

Radiology: Volume 290: Number 1—January 2019  n  radiology.rsna.org	 53

Materials and Methods
This retrospective study was approved by the Massachusetts 
General Hospital institutional review board, who waived the 
need to obtain informed consent, and was compliant with the 
Health Insurance Portability and Accountability Act.

Development and Testing of the DL Model
We developed and tested our DL model by using 58 894 ran-
domly selected digital mammograms from 39 272 women 
screened between January 2009 and May 2011; there were no 
exclusion criteria (eg, prior surgery, implants, etc). The women 
were randomly assigned to a training (n = 41 479), development 
(n = 8738), or test (n = 8677) set. Breast density was recorded by 
one of 12 radiologists who specialized in breast imaging and who 
had 5–33 years of experience following the American College of 
Radiology BI-RADS lexicon (category a, almost entirely fatty; 
category b, scattered areas of fibroglandular tissue; category c,  
heterogeneously dense; category d, extremely dense) (19).

We implemented our model by using a deep convolutional 
neural network, ResNet-18 (20), with PyTorch (2018, version 
0.31; pytorch.org). The model was trained to map images in a 
single view, without any exclusions, to assess breast density. To 
aggregate the density assessments from each view into an as-
sessment for the examination, we used the consensus density 
across views, if present; otherwise, ties were broken randomly. 
During model development, we augmented our training data 
with random flips and rotations of the original images and ex-
perimented with various regularization strategies and model 
architectures. We chose this network because it had the best 
performance in the development set. Appendix E1 (online) 
contains additional details regarding our DL model.

After training, we assessed the proportion of examinations 
in which the model enabled prediction of the density rating 
given by the original interpreting radiologist for the held-out 
test set. We evaluated binary categorization for BI-RADS cat-
egories c and d (dense) or a and b (nondense) and for the four 
individual BI-RADS categories (categories a, b, c, d). For both 
binary and four-way categorizations, we quantified the types of 
disagreements made by the model in a confusion matrix. Each 
examination is placed in a specific cell, as determined by the 

density assessment of the radiologist (row) and model (column). 
Percentages were computed by dividing the number of examina-
tions in the cell by the number of examinations in the row. We 
also measured agreement between our DL model and the origi-
nal radiologist assessment across the four BI-RADS categories.

Reader Study
We recorded breast density assessments by five breast imag-
ers with 2–23 years of experience (C.D.L., B.D., M.B., with 
23, 5, and 3 years of experience, respectively) for 500 mam-
mograms randomly selected from the test set. The breast im-
agers were blinded to each other, to the original radiologist’s 
interpretation, and to the DL model assessment. We compared 
agreement between the DL model and the consensus (majority  
assessment) of the five breast imagers and between the DL 
model and the original interpreting radiologist. We also com-
pared agreement between the five breast imagers in consen-
sus and the original interpreting radiologist. Because the DL 
model was trained on the assessments of multiple radiologists, 
we hypothesized that the DL model would show higher agree-
ment with the assessment made by the radiologists working in 
consensus than with the original radiologist assessment.

Clinical Implementation and Acceptance of DL 
Assessment
We assessed the clinical acceptance of our DL model by using 
10 763 consecutive screening digital mammograms from January 
to May of 2018. No mammographic examinations were excluded 
(eg, no exclusions due to prior surgery, implants, etc). Mammo-
grams were automatically retrieved from the picture archiving 
and communication system and were processed with the DL  
algorithm; DL density assessment (BI-RADS category a, b, c, or 
d) was sent to a commercially available mammography reporting 
software program (Magview 2018, version 8.0.143; Magview. 
Burtonsville, Md). The time for retrieval and assessment of the 
mammogram and presentation of the density in the patient’s 
mammography report took less than five seconds per case and 
was implemented for mammograms obtained from one local 
and five remote screening centers. Mammograms were analyzed 
at our mammography review workstations (SecurView Work-
station; Hologic) by following our routine clinical workflow for 
assessment and reporting. Eight breast imagers with 2–23 years 
of experience participated in clinical implementation evalua-
tion. None of these radiologists contributed density assessments 
to our training, development, or test sets. During the review, 
radiologists (C.D.L., B.D., M.B.) were provided with the DL 
model density assessment in the electronic report provided by 
the reporting software. The final density assessment of the mam-
mogram was at the discretion of the radiologist (ie, to agree or 
disagree with the DL algorithm). We measured the proportion 
of automatic DL assessments accepted by the interpreting radi-
ologist for the final reading, both for binary categorization as 
dense or nondense and across the four BI-RADS categories.

Statistical Analysis
The proportion of mammograms in which DL model assess-
ment matched radiologist assessment in the test set and in the 

Abbreviations
BI-RADS = Breast Imaging Reporting and Data System, CI = confi-
dence interval, DL = deep learning

Summary
A deep learning algorithm was used to assess mammographic breast 
density at the level of an experienced mammographer during routine 
clinical practice.

Implications for Patient Care
nn A deep learning algorithm was used to reliably and accurately as-

sess mammographic breast density in a large clinical practice.
nn Given the high level of agreement between the deep learning 

algorithm and experienced mammographers, this algorithm has 
the potential to standardize and automate routine breast density 
assessment.
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assessed 8% as almost entirely fatty, 52% as scattered areas of 
fibroglandular tissue, 38% as heterogeneously dense, and 2% 
as extremely dense. For binary categorization of dense or non-
dense tissue, the density assigned by the DL model matched 
that assigned by the original interpreting radiologist for 7566 
of 8677 (87%; 95% CI: 86%, 88%) mammograms. The model 
downgraded 567 of 8677 (7%) mammograms from dense to 
nondense and upgraded 547 of 8677 (6%) mammograms from 
nondense to dense. For four-way BI-RADS categorization, the 
DL model matched the radiologist interpretation for 6681 of 
8677 (77%; 95% CI: 76%, 78%) mammograms (Table 2). Of 
the 1993 instances of disagreement between the DL model and 
human observers, 1105 (55%) were between scattered areas of 
fibroglandular tissue and heterogeneously dense, 566 (28%) 
were between almost entirely fatty and scattered areas of fibro-
glandular tissue, and 323 (16%) were between heterogeneously 
dense and extremely dense. Model disagreements between al-
most entirely fatty and extremely dense did not occur. (Fig 1). 
Agreement between density assessments with our DL model 
and those of the original interpreting radiologist was good (k = 
0.67; 95% CI: 0.66, 0.68) (Table 3).

Reader Study
We next describe the distribution density assessments of the 
readers in consensus, the original interpreting radiologist, and 
the DL model for the 500 random mammograms from the test 
set. The readers working in consensus assessed 13% of mam-

clinical implementation set was estimated by using 95% Wil-
son confidence intervals. We quantified the types of disagree-
ments in confusion matrices and computed agreement between 
final assessment and DL assessment across the four BI-RADS 
categories, estimating with weighted k using linear weighting. 
The k statistics were compared across 5000 bootstrap samples 
to assess significance. We computed all statistics using statisti-
cal software (scikit-learn, version 0.19.1; scikit-learn.org).

Results
The training set consisted of 27 684 women who underwent 
41 479 screening mammographic examinations, with an average 
patient age of 57 years (age range, 31–97 years). The original inter-
preting radiologists assessed breast density as almost entirely fatty 
in 9% of examinations, as scattered areas of fibroglandular tissue 
in 50% of examinations, as heterogeneously dense in 36% of ex-
aminations, and as dense in 5% of examinations. The held-out test 
set consisted of 5741 women who underwent 8677 examinations, 
with an average patient age of 57.5 years (range, 28–92 years). The 
original interpreting radiologists assessed breast densities as almost 
entirely fatty in 9% of patients, as scattered areas of fibroglandular 
tissue in 50% of patients, as heterogeneously dense in 36% of pa-
tients, and as dense in 5% of patients (Table 1).

Testing of DL Model
We first describe the distribution of the DL algorithm assess-
ments. Of the 8677 held-out test mammograms, the DL model 

Table 1: Patient Characteristics and Breast Density as Assessed by Original Interpreting Radiologists in Training and 
Test Sets

Characteristic Training Set Test Set
Screening mammograms 41 479 8677
No. of patients 27 684 5741
Age (y)* 57.4 (31–97) 57.5 (28–92)
  ,40 459 (1) 100 (1)
  40–49 11 602 (28) 2398 (28)
  50–59 12 235 (29) 2591 (30)
  60–69 10 556 (25) 2171 (25)
  70 6627 (16) 1417 (16)
Radiologist-assessed breast density
  Almost entirely fatty 3818 (9) 792 (9)
  Scattered areas of fibroglandular tissue 20 913 (50) 4386 (51)
  Heterogeneously dense 14 856 (36) 3096 (36)
  Extremely dense 1892 (5) 403 (5)

Note.—Unless otherwise indicated, data are numbers of mammograms, and data in parentheses are percentages.
* Data are mean age, and data in parentheses are the range.

Table 2: Proportion of DL Model Assessments Matching Radiologist Assessments in the Test and Clinical Implementa-
tion Settings

Setting Dense or Nondense Four BI-RADS Categories Total No. of Patients
Test set accuracy 7566 (87) [86, 88] 6681 (77) [76, 78] 8677
Clinical implementation set acceptance 10 149 (94) [94, 95] 9729 (90) [90, 91] 10 763

Note.—Data are number of patients. Data in parentheses are accuracy or acceptance, as indicated, and are percentages. Data in brackets are 
95% confidence intervals. DL = deep learning.
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radiologist was also good (k = 0.63; 95% CI: 0.58, 0.69) and 
closely matched agreement of the DL model with the original 
interpreting radiologist. Overall, the model followed the assess-
ment of the radiologists in consensus most closely, with the 
highest level of agreement occurring between the DL model 
and radiologists in consensus (higher than the agreement be-
tween the original interpreting radiologist and the radiologists 
in consensus).

Clinical Implementation and Acceptance of DL 
Assessment
A total of 10 763 consecutive screening mammograms  
from 10 763 patients were evaluated with the DL model in 
real time during the clinical implementation phase. The 

mograms as almost entirely fatty, 48% as scattered areas of fi-
broglandular tissue, 38% as heterogeneously dense, and 2% as 
extremely dense, while the original interpreting radiologist as-
sessed 9% as almost entirely fatty, 55% as scattered areas of fi-
broglandular tissue, 31% as heterogeneously dense, and 5% as 
extremely dense. The DL model assessed 8% as almost entirely 
fatty, 57% as scattered areas of fibroglandular tissue, 33% as 
heterogeneously dense, and 2% as extremely dense. As shown 
in Table 3, agreement between the DL model and the original 
interpreting radiologist was good (k = 0.62; 95% CI: 0.57, 
0.67). In addition, agreement between the DL model and the 
radiologists working in consensus was good (k = 0.78; 95% 
CI: 0.73, 0.82), with a significantly higher k value. Agreement 
between the radiologists in consensus and the original interpreting 

Figure 1:  Test set assessment. Comparison of the original interpreting radiologist assessment with the deep learning (DL) 
model assessment for (a) binary and (c) four-way mammographic breast density classification. (b, d) Corresponding examples 
of mammograms with concordant and discordant assessments by the radiologist and with the DL model.
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Table 3: Agreement Statistics across Four BI-RADS Categories in Test, Blinded Reader Consensus, and Clinical Imple-
mentation Settings

Setting and Comparison Linear Weighted k Value No. of Mammograms
Test set (DL model vs original interpreting radiologist) 0.67 (0.66, 0.68) 8677
Reader consensus 
  DL model vs original interpreting radiologist 0.62 (0.57, 0.67) 500
  Reader consensus vs original interpreting radiologist 0.63 (0.58, 0.69) 500
  DL model vs reader consensus 0.78 (0.73, 0.82) 500
Clinical implementation (DL model vs final radiologist assessment) 0.85 (0.84, 0.86) 10 763

Note.—Data in parentheses are 95% confidence intervals. DL = deep learning. BI-RADS = Breast Imaging Reporting and Data System.

Figure 2:  Clinical implementation assessment. Comparison of the original interpreting radiologist assessment with the deep 
learning (DL) model assessment for (a) binary and (c) four-way mammographic breast density classification. (b, d) Examples 
of mammograms with concordant and discordant assessments by the radiologist (b) and with the DL model (d).

DL model assessed 6% of mammograms as almost entirely 
fatty, 52% as scattered areas of fibroglandular tissue, 40% as  
heterogeneously dense, and 2% as extremely dense. In the bi-
nary categorization of dense or nondense breasts, the propor-

tion of DL assessments accepted by the interpreting radiologist 
was 10 149 of 10 763 (94%; 95% CI: 94%, 95%) (Table 2). Of 
the 614 DL assessments not accepted by the interpreting radiol-
ogist, 201 (33%) mammograms were downgraded from dense 
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“acceptance” metric is not the same as measuring “truth” or 
“accuracy.” However, in a subset of 500 mammograms, the DL 
assessment showed good agreement (k = 0.78; 95% CI: 0.73, 
0.82) with the consensus interpretation of five experienced 
blinded breast imagers; this is similar to the very good agree-
ment (k = 0.85; 95% CI: 0.84, 0.86) between the DL model 
and the final radiologist assessment.

In summary, we present an analysis of clinical implemen-
tation of a DL model used to assess breast density in women 
undergoing screening digital mammography. Our DL model 
provides efficient and reliable density assessments, both at the 
patient level and at the population level, and it is designed to be 
widely available, simple to use, and cost effective. It can be used 
to measure breast density in a diverse set of patients, without 
limitations based on prior surgery or other breast interventions. 
Our tool can potentially address concerns for current breast den-
sity legislation, and it can help providers supply more accurate 
information to patients and help health systems optimize the use 
of supplemental screening resources. To this end, we have made 
our tool publicly available for research use at http://learningtocure.
csail.mit.edu.
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