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C A N C E R

Toward robust mammography-based models for  
breast cancer risk
Adam Yala1,2*, Peter G. Mikhael1,2, Fredrik Strand3,4, Gigin Lin5, Kevin Smith6,7, Yung-Liang Wan5, 
Leslie Lamb8, Kevin Hughes9, Constance Lehman8†, Regina Barzilay1,2†

Improved breast cancer risk models enable targeted screening strategies that achieve earlier detection and less 
screening harm than existing guidelines. To bring deep learning risk models to clinical practice, we need to fur-
ther refine their accuracy, validate them across diverse populations, and demonstrate their potential to improve 
clinical workflows. We developed Mirai, a mammography-based deep learning model designed to predict risk at 
multiple timepoints, leverage potentially missing risk factor information, and produce predictions that are 
consistent across mammography machines. Mirai was trained on a large dataset from Massachusetts General 
Hospital (MGH) in the United States and tested on held-out test sets from MGH, Karolinska University Hospital in 
Sweden, and Chang Gung Memorial Hospital (CGMH) in Taiwan, obtaining C-indices of 0.76 (95% confidence 
interval, 0.74 to 0.80), 0.81 (0.79 to 0.82), and 0.79 (0.79 to 0.83), respectively. Mirai obtained significantly higher 
5-year ROC AUCs than the Tyrer-Cuzick model (P < 0.001) and prior deep learning models Hybrid DL (P < 0.001) 
and Image-Only DL (P < 0.001), trained on the same dataset. Mirai more accurately identified high-risk patients 
than prior methods across all datasets. On the MGH test set, 41.5% (34.4 to 48.5) of patients who would develop 
cancer within 5 years were identified as high risk, compared with 36.1% (29.1 to 42.9) by Hybrid DL (P = 0.02) and 22.9% 
(15.9 to 29.6) by the Tyrer-Cuzick model (P < 0.001).

INTRODUCTION
It is estimated that 39 million mammograms are performed in the 
United States every year (1, 2), with $1.1 billion dollars being spent 
by Medicare alone (3). Despite the wide adoption of breast cancer 
screening, the practice is riddled with controversy. Proponents of 
more aggressive screening strategies aim to maximize the benefits 
of early detection (4–9), whereas advocates of less frequent screen-
ing aim to reduce the false-positive assessments, anxiety, and costs 
for the patients who will never develop breast cancer (10–14). As a 
result, in the United States, there are multiple guidelines with differ-
ent recommendations about when to start screening, how often to 
get screened, and when supplemental screening is needed (15–20). 
We argue that both goals of earlier detection and reducing over-
treatment can be achieved by leveraging more accurate risk models. 
With improved risk-based guidelines, we can offer more sensitive 
screening to patients who will develop cancer, achieving earlier 
detection while reducing unnecessary screening and overtreatment 
for the rest. Moreover, because of the scale of breast cancer screen-
ing, even modest improvements in screening guidelines have the 
potential to benefit a wide patient population.

All guidelines currently in clinical use leverage risk models. Some 
guidelines (19) use risk models as simple as a patient’s age to deter-
mine whether, and how often, a woman should get screened, whereas 
others (16) combine multiple factors relating to age, hormonal factors, 
genetics, and mammographic breast density to determine whether 
supplemental imaging should be considered. However, despite de-
cades of effort, the accuracy of risk models used in clinical practice 
remains modest. For instance, the Tyrer-Cuzick (21) and Gail (22) 
models achieved areas under the curve (AUCs) of 0.62 and 0.59, 
respectively, in a prospective UK screening cohort (23). Recently, 
image-based deep learning models have shown considerable promise 
(24, 25), obtaining AUCs up to 0.70 for assessing 5-year risk and 
advancing the state of the art. However, to bring an image-based 
risk model to the clinic, we not only need to further improve its 
accuracy but must also validate its performance at scale across 
diverse populations and clinical settings. Furthermore, we need to 
demonstrate that it can identify more accurate high-risk cohorts. Here, 
we aimed to achieve all three of these goals by developing Mirai and 
studying its performance across multiple populations.

RESULTS
Overview of algorithm
In computational terms, risk assessment can be viewed as a prediction 
task, where the model is trained to associate features of mammograms 
with future cancer diagnoses. Although this setup, referred to as 
supervised learning, is commonly used for medical tasks (26–30), 
risk modeling also poses several unique requirements. It requires 
risk prediction at various time points, the ability to leverage po-
tentially missing nonimage data (such as age and family history), 
and consistent performance across heterogeneous mammography 
devices.

Inherent to risk modeling is learning from patients with variable 
amounts of follow-up and needing to assess risk at different time 
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points. Although it is possible to train separate models to assess risk 
for each time point based on patients with the corresponding amount 
of follow-up (1 to 5 years), this approach can result in mutually in-
consistent risk assessments. For instance, a model could predict that 
a patient has a higher risk of developing cancer within 2 years than 
within 5 years. Moreover, this approach does not leverage the inherent 
relationship between assessing risk at different time points. We ad-
dress this by training a single model to predict risk at all time points 
and by explicitly designing the architecture to produce self-consistent 
predictions. This formulation also enables the model to learn from 
data with variable amounts of follow-up.

Although our method primarily focuses on mammograms, we 
also wanted to leverage nonimage risk factors (for example, age and 
hormonal factors) if they were available. An obvious mechanism for 
incorporating nonimage risk factors is to add them as an input to 
the model jointly with the image. However, this design would pre-
vent hospitals that do not collect this kind of information from us-
ing the model. Although we could impute this missing information 
by using a reference population, that would not take into account 
the relationship between the mammogram and the risk factors. To 
address this challenge, we trained our model to predict risk factor 
values from the mammogram, enriching our original objective with 
this new prediction task. This formulation enabled the model to 
benefit from available risk factor data while allowing it to impute the 
information if it is missing.

To incorporate deep learning risk models into clinical guidelines, 
the models must be consistent across a range of mammography de-
vices, in other words, they must predict the same risk for a patient 
regardless of the mammography device. We addressed this challenge 
by adopting a conditional-adversarial training scheme (31). This 
training regime forces the model to induce image representation in 
a device-invariant fashion and to produce consistent risk assessments.

Our full model, named Mirai, is depicted in Fig. 1. It takes as 
input all standard views of a mammogram: left craniocaudal (L CC), 
left mediolateral-oblique (L MLO), right craniocaudal (R CC), and 
right mediolateral-oblique (R MLO). Mirai consists of four modules: 
an image encoder, an image aggregator, a risk factor predictor, and 
an additive-hazard layer. A run through the model works as follows: 
first, we pass each mammogram view independently through the 
image encoder. Next, we take each image representation as well as 
which view it came from (for example, L CC and R MLO), and pass 
it into the image aggregation module to combine information 
across views and obtain a representation of the entire mammogram. 
Given this rich representation of the mammogram, we then predict 
a patient’s traditional risk factors as used in Tyrer-Cuzick (such as 
age, weight, and hormonal factors) and refer to this as our risk fac-
tor prediction module. If risk factor information is not available at 
inference time, we then use the predicted values. Next, we take the 
mammogram representation from our image aggregator, combined 
with our risk factor information (predicted or given), and predict a 
patient’s risk with an additive-hazard layer. The additive-hazard layer 
predicts a patient’s risk for each year over the next 5 years. Architec-
tural details for each module are presented in the Supplementary 
Materials and Methods, and all code is released.

Training and testing at MGH
We developed Mirai using the Massachusetts General Hospital (MGH) 
dataset, which consists of 210,819, 25,644, and 25,855 examinations 
from 56,786, 7020, and 7005 patients, for the training, validation, 

and test sets, respectively. This dataset contained detailed risk factor 
information, as used in Tyrer-Cuzick version 8 (TCv8), that was 
available at the time of mammography. The distribution of clinical 
risk factors in the MGH dataset, as used by TCv8, is shown in table 
S1. A flowchart illustrating the construction on the MGH dataset is 
shown in Fig. 2.

To determine the impact of using predicted risk factors on 
Mirai’s performance, we evaluated the model both when using the 
electronic health record-based and predicted risk factors, referring 
to the two scenarios as “Mirai with risk factors” and “Mirai without 
risk factors,” respectively. We compared Mirai against three alter-
native risk models: Hybrid DL (25), Image-Only DL (25), and TCv8. 
Hybrid DL is a deep learning model based on both mammograms 
and traditional risk factors, and Image-Only DL is a deep learning 
model based only on mammograms. Hybrid DL requires traditional 
risk factors to predict risk, whereas Image-Only DL does not use such 
information. We note that Hybrid DL and Image-Only DL were 
both developed using the same MGH dataset as Mirai, and so, differ-
ences in performance can only be attributed to the algorithm design. 
Image-Only DL is equivalent to the image encoder component of 
Mirai trained by itself as a 5-year risk classifier. TCv8 is a traditional 
risk model that combines a variety of risk factors including age, 
family history, and hormonal factors and is a current clinical stan-
dard. We obtained TCv8 risk assessments using the Command-Line 
version of the IBIS Breast Cancer Risk Evaluation tool (version 8).

Fig. 1. Schematic description of Mirai. The four standard views of an individual 
mammogram were fed into Mirai. The image encoder mapped each view to a vector, 
and the image aggregator combined the four view vectors into a single vector for 
the mammogram. In this work, we used a single shared ResNet-18 as an image en-
coder, and a transformer as our image aggregator. The risk factor predictor module 
predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed 
family history, and hormonal factors, from the mammogram vector. The additive 
hazard layer combined information from both the image aggregator and risk fac-
tors (predicted or given) to predict coherent risk assessments across 5 years (Yr).
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To better investigate the connection between risk estimation and 
cancer detection, we also compared Mirai with retrospective radiologist 
BI-RADS (Breast Imaging-Reporting and Data System) assessments 
and a recently proposed cancer detection model, Image-and-Heatmaps 
(32), on the MGH test set. Image-and-Heatmaps is a convolution-
al neural network trained on a large dataset from New York University 
(NYU) using both pixel-level and whole-image annotations to pre-
dict cancer within 120 days. We obtained Image-and-Heatmaps 
cancer predictions using their publicly available GitHub (33) and 
did not use test-time data augmentations or model ensembling.

On the 25,855 examinations (588 positive) in the MGH test set, 
Mirai with and without risk factors obtained C-indices of 0.76 (0.74 
to 0.80) and 0.75 (0.72 to 0.78) compared with C-indices of 0.72 
(0.69 to 0.75), 0.72 (0.69 to 0.75), and 0.64 (0.60 to 0.67) by Hybrid 
DL, Image-Only DL, and TCv8, respectively. The full results on the 
MGH dataset are summarized in Table 1, and receiver operating 
characteristic (ROC) curves for each time point are shown in Fig. 3. 
Mirai with risk factors had a significantly higher 5-year AUC than 
Hybrid DL, Image-Only DL, and TCv8 with P values of <0.001, <0.001, 
and <0.001, respectively. Mirai with risk factors did not have a sig-
nificantly higher 5-year AUC than Mirai without risk factors (P = 0.27). 
We also present an analysis of model performance excluding 
cancers identified within 6 months of the screening mammogram, 
resulting in 25,708 examinations (441 positive) (table S2). In this 
setting, Mirai with risk factors had a significantly higher 5-year 
AUC than Hybrid DL, Image-Only DL, and TCv8, with P values of 
<0.001, 0.02, and <0.001, respectively, and did not have a signifi-
cantly higher 5-year AUC than Mirai without risk factors (P = 0.27). 
We also evaluated the performance of radiologist BI-RADS assess-
ments and Image-and-Heatmaps (32) in Table 1. Radiologists 
obtained ROC AUCs of 0.92 (0.90 to 0.95) and 0.75 (0.72 to 0.78) at 
1 and 2 years, respectively, compared with 0.84 (0.81 to 0.88) and 
0.80 (0.76 to 0.83) by Mirai. We found that Image-and-Heatmaps 
obtained a 1-year AUC of 0.78 (0.73 to 0.82) and a C-index of 0.68 
(0.65 to 0.72). 

We performed an ablation study of Mirai to investigate the effects 
of different design choices on overall performance and mammography 
device bias (table S3 and fig. S1). To evaluate the mammography 
device bias of a risk model, we trained a classifier to predict which 
machine was used to acquire a mammogram from the model’s cor-
responding risk assessment and measured the AUC of this device-
identity classifier on the MGH test set. We found that an ablation of 
Mirai without risk factors that removed conditional adversarial 
training obtained a device-identity AUC of 0.76 (0.75 to 0.76), re-
flecting large device bias. With the addition of conditional adversarial 
training, Mirai without risk factors obtained a device-identity AUC 
of 0.50 (0.50 to 0.50), effectively removing the bias. We evaluated 
the saliency of each risk factor in Mirai’s predictions across the MGH 
test set in fig. S2. The most important risk factors were a patient’s 
BRCA status, if they had any family history (binary family history), 
and if they had had any children (parous), with average saliency scores of 
0.07 (0.07, 0.07), 0.04 (0.04, 0.04), and 0.03 (0.03, 0.03), respectively. 
In contrast, mammograms had an average saliency score of 2.19 
(2.17, 2.22). We note that the mammogram obtained a 30-fold higher 
saliency score than the most important clinical factor, BRCA status. 
This finding is consistent both with the reported performance of 
Mirai with and without risk factors shown in Table 1 and the result 
that Mirai with risk factors did not obtain a significantly higher 
5-year AUC than Mirai without risk factors (P = 0.27).

Generalization to additional populations
For Mirai to be useful to the larger community, it must be validated 
in a diverse set of clinical environments and patient populations. To 
this end, we tested the model on a dataset from the Karolinska 
University Hospital in Sweden consisting of 19,328 examinations 
(1413 positive) from 7353 patients and a dataset from the Chang 
Gung Memorial Hospital (CGMH) in Taiwan consisting of 13,356 
examinations (244 positive) from 13,356 patients. A dataset con-
struction flowchart for both datasets is shown in Fig. 2. Traditional 
risk factors were not available in either dataset. As a result, we tested 

Fig. 2. Dataset construction flowchart. Shown are the MGH (left), Karolinska (middle), and CGMH (right) datasets.
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Mirai (without risk factors) and Image-Only DL but not TCv8 or 
Hybrid DL, which require risk factors.

On the Karolinska dataset, Mirai obtained a C-index of 0.81 
(0.79 to 0.82) compared with a C-index of 0.75 (0.73 to 0.77) by 
Image-Only DL. Mirai performed similarly on the CGMH test set, 
obtaining a C-index of 0.79 (0.76 and 0.83) compared with a C-index 
of 0.70 (0.66 and 0.74) by Image-Only DL. The full results on the 
Karolinska and CGMH test sets are summarized in Table 1, and 
ROC curves for each time point are displayed in Fig. 3. In both 
Karolinska and CGMH, Mirai had a significantly higher 5-year 
AUC than Image-Only DL with P values of <0.001 and <0.001, re-
spectively. We note that Mirai obtained similar 5-year AUCs across 
all test sets, achieving AUCs of 0.76 (0.73 to 0.80), 0.78 (0.76 to 
0.80), and 0.79 (0.75 to 0.82) for the MGH, Karolinska, and CGMH 
test sets, respectively. We also present an analysis excluding cancers 
identified within 6 months of the screening mammogram in table 
S2. In this setting, Mirai had a significantly higher 5-year AUC than 
Image-Only, with P values of <0.001 and <0.001 on the Karolinska 
and CGMH test sets, respectively.

Subgroup analysis
We also validated all risk models for different clinical subgroups of 
interest. In the MGH test set, we computed model C-indices for 
patients of different races (White, African American, and Asian 
American), different age groups, different density categories, and 
different mammography devices. We found that Mirai performed 
similarly across all groups. This information is available in table S4. 
We note that the C-indices for Mirai with risk factors for White, 
Asian American, and African American patients were 0.75 (0.72 to 
0.78), 0.80 (0.68 to 0.95), and 0.71 (0.55 to 0.90), respectively, com-
pared with 0.64 (0.60 to 0.68), 0.54 (0.36 to 0.75), and 0.62 (0.44 to 
0.84) for TCv8. The consistent performance for Asian Americans is 
further supported by the C-index of 0.79 (0.76 to 0.83) in the CGMH 

dataset. In the Karolinska dataset, we computed Mirai C-indices by 
future cancer subtype (invasive, HER2 status, and so on) in table S5. 
The distribution of cancer subtypes is reported in table S6. We found 
that Mirai obtained similar C-indices across different subtypes, which 
is further supported by a t-SNE (t-distributed stochastic neighbor 
embedding) (34) analysis (fig. S3) showing that the model learns 
similar representations for mammograms regardless of the subtype 
of the future cancer.

Identifying high-risk cohorts
Our next objective was to investigate whether improved risk models 
can advance early detection. A wide range of guidelines already 
exist to offer either supplemental screening (15–20, 35) or chemo-
prevention (36, 37) for patients at high risk of future cancer. To 
improve these guidelines, it is necessary to improve our definitions 
of who is at “high risk.” To this end, we evaluated the ability of dif-
ferent risk models to identify high-risk patients. We restricted our 
analysis to patients in the MGH, Karolinska, and CGMH test sets 
who were screening negative and had either cancer within 5 years or 
had 5 years of negative follow-up. We did not have access to radiologist 
BI-RADS assessments for all datasets, so we defined a screening nega-
tive examination as not receiving a cancer diagnosis within 6 months.

The MGH, Karolinska, and CGMH 5-year cohorts had 3957, 
5707, and 11,167 patients and consisted of 9284 examinations with 
441 future cancers, 5707 examinations with 869 future cancers, and 
11,167 examinations with 139 future cancers, respectively. Intuitively, 
we wanted a risk model to identify the most future cancers 
(high sensitivity) without directing unnecessary interventions to 
patients without future cancer (high specificity). We considered four 
possible methods of determining high-risk patients: Tyrer-Cuzick 
lifetime risk, Image-Only DL, Hybrid DL, and Mirai. For Tyrer-Cuzick 
lifetime risk, we used a high-risk threshold of 20%, which is used in 
current guidelines for supplemental screening by the American Cancer 

Table 1. ROC AUCs and C-indices for Mirai and prior risk models on all test sets. On the MGH test set, we also evaluated Image-and-Heatmaps (32) and 
radiologist BI-RADS assessments. All metrics are followed by their 95% confidence interval. 

Model Use risk factors C-index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC

MGH test set: 25,855 exams, 558 followed by cancer diagnosis

  Tyrer-Cuzick Version 
8 (TCv8) (21)

No 0.64 (0.60–0.67) 0.66 (0.61–0.71) 0.65 (0.61–0.69) 0.64 (0.60–0.68) 0.63 (0.59–0.67) 0.62 (0.59–0.66)

  Radiologist BI-RADS NA 0.67 (0.65–0.70) 0.92 (0.90–0.95) 0.75 (0.72–0.78) 0.68 (0.65–0.70) 0.64 (0.62–0.67) 0.62 (0.60–0.65)

  Image-and-
Heatmaps (32)

No 0.68 (0.65–0.72) 0.78 (0.73–0.82) 0.73 (0.70–0.77) 0.69 (0.66–0.73) 0.67 (0.63–0.70) 0.64 (0.60–0.68)

  Image-Only DL (25) No 0.72 (0.69–0.75) 0.79 (0.75–0.83) 0.75 (0.71–0.78) 0.73 (0.70–0.77) 0.73 (0.70–0.76) 0.73 (0.70–0.77)

  Hybrid DL (25) Yes 0.72 (0.69–0.75) 0.78 (0.75–0.82) 0.74 (0.71–0.78) 0.72 (0.68–0.75) 0.72 (0.68–0.75) 0.72 (0.69–0.76)

  Mirai (ours)
No 0.75 (0.72–0.78) 0.84 (0.80–0.87) 0.78 (0.75–0.82) 0.77 (0.74–0.80) 0.76 (0.73–0.79) 0.76 (0.73–0.79)

Yes 0.76 (0.74–0.80) 0.84 (0.81–0.88) 0.80 (0.76–0.83) 0.78 (0.75–0.81) 0.76 (0.73–0.80) 0.76 (0.73–0.80)

Karolinska test set: 19,328 examinations, 1413 followed by cancer diagnosis

  Image-Only DL (25) No 0.75 (0.73–0.77) 0.83 (0.81–0.86) 0.79 (0.77–0.81) 0.75 (0.73–0.77) 0.73 (0.71–0.75) 0.71 (0.69–0.73)

  Mirai (ours) No 0.81 (0.79–0.82) 0.90 (0.89–0.92) 0.86 (0.84–0.88) 0.82 (0.80–0.84) 0.80 (0.79–0.82) 0.78 (0.76–0.80)

CGMH test set: 13,356 examinations, 244 followed by cancer diagnosis

  Image-Only DL (25) No 0.70 (0.66–0.74) 0.80 (0.75–0.64) 0.76 (0.71–0.80) 0.72 (0.67–0.76) 0.71 (0.67–0.75) 0.70 (0.66–0.73)

  Mirai (ours) No 0.79 (0.76–0.83) 0.90 (0.87–0.93) 0.86 (0.83–0.90) 0.82 (0.78–0.85) 0.80 (0.77–0.84) 0.79 (0.75–0.82)
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Society, the American College of Radiology, and the National Com-
prehensive Cancer Network (19, 20, 35). For Image-Only DL, Hybrid 
DL, and Mirai, we chose high-risk thresholds to match the specificity of 
Tyrer-Cuzick lifetime risk model on the MGH development set. On 
the Karolinska and CGMH 5-year cohorts, we evaluated the perform
ance of Mirai and Image-Only DL using the thresholds computed 
on the MGH test. To enable more direct comparison, we also com-
puted the performance of Image-Only DL when we chose a thresh-
old to match Mirai’s specificity on each dataset.

The full results of our analysis across the MGH, Karolinska, and 
CGMH test sets are in Table 2, and the ROC curves of all models in 
this setting are shown in Fig. 4. On the MGH 5-year cancer cohort, 
the Tyrer-Cuzick lifetime risk >20% guideline obtained a sensitivity 
and specificity of 22.9% (15.9 to 29.6) and 85.4% (84.1 to 86.6), re-
spectively. Although obtaining similar specificity, Mirai with risk 
factors, Mirai without risk factors, Hybrid DL, and Image-Only DL 
obtained sensitivities of 41.5% (34.2 to 48.5), 39.7% (32.9 to 46.5), 
36.1% (29.1 to 42.9), and 32.9% (26.1 to 39.4), respectively. Moreover, 
the sensitivity of Mirai with risk factors was significantly higher 
than that of Hybrid DL, Image-Only DL, and Tyrer-Cuzick lifetime 
risk, with P values of P = 0.02, P < 0.001, and P < 0.001, respectively. 
The sensitivity of Mirai with risk factors was not significantly higher 
than Mirai without risk factors (P = 0.37). We present a supplemen-
tary analysis of the MGH dataset in table S7, where we used radiologist 
BI-RADS assessments in determining who was screening negative. 

On the Karolinska and CGMH test sets, Mirai without risk factors 
obtained sensitivities of 26.0% (22.4 to 29.6) and 37.4% (29.3 to 45.5) 
and specificities of 93.1% (92.4 to 93.9) and 88.5% (88.0 to 89.2), 
respectively. We found that Image-Only DL performed poorly when 
using the risk threshold identified on the MGH test set. When cali-
brated to obtain the same specificities as Mirai, Image-Only DL 
obtained sensitivities of 18.9% (15.6 to 22.1) and 24.5% (16.9 to 
31.3), respectively. Mirai obtained significantly higher sensitivities 
than Image-Only DL in both datasets (P < 0.001 and P < 0.001).

DISCUSSION
We developed a risk model, Mirai, to assess breast cancer risk from 
screening mammograms. Mirai demonstrated improved discriminatory 
capacity over the state-of-the-art clinically adopted Tyrer-Cuzick and 
prior deep learning approaches Hybrid DL and Image-Only DL. 
Moreover, we found that Mirai, which was trained at MGH, maintained 
its performance on datasets from both Karolinska in Sweden and 
CGMH in Taiwan without additional training. Externally validating 
our model across diverse clinical settings is especially important given 
recent negative findings for the generalization of other proposed 
mammography-based models for cancer risk (38). We evaluated Mirai 
across races, ages, and breast density categories in the MGH test set 
and across cancer subtypes on the Karolinska dataset and found that 
it performed similarly across all subgroups. We also demonstrated 

Fig. 3. ROCs for model predictions on MGH, Karolinska, and CGMH test sets. Results are shown in the top, middle, and bottom rows, respectively. The curves are ar-
ranged left to right from 1- to 5-year outcomes.

 by guest on January 27, 2021
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

http://stm.sciencemag.org/


Yala et al., Sci. Transl. Med. 13, eaba4373 (2021)     27 January 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

6 of 11

how Mirai could be implemented in current clinical pipelines fo-
cused on identifying high-risk patients and showed that it improved 
over existing risk models such as Tyrer-Cuzick lifetime risk and 
Image-Only DL.

Risk models in clinical practice today, namely, breast density and 
traditional statistical models, are the foundation of current guide-
lines for personalized screening and prevention. For instance, breast 
density, which was described as early as 1967 (39), was the first to 
recognize that a woman’s imaging could inform her future cancer 
risk; the DENSE trial (40) later showed that giving women with 
extremely dense breasts supplemental magnetic resonance imaging 
could substantially reduce interval cancers. Traditional statistical risk 
models, like the Gail and Tyrer-Cuzick models (21, 22), have long 
recognized that combining multiple sources of information can yield 
better predictions, and they are the base of both current supplemental 
imaging and chemoprevention guidelines (16, 19, 35–37). Our 
research builds upon their seminal works. We hypothesize that de-
veloping more accurate risk models will enable further guideline 
personalization and thus lead to better outcomes.

The performance of Mirai can be attributed to how its design 
captures unique characteristics of breast cancer risk estimation. 
Specifically, the model architecture jointly reasons over both dif-
ferent views of the mammogram and multiple time points of 
risk assessment. Moreover, we demonstrated how to incorporate 
nonimage risk factors such as age or hormonal factors to further 
refine accuracy, while enabling the model to impute this infor-
mation if it is not provided. Last, we used a conditional adver-
sarial training regime to learn image representations that are device 
invariant.

Our work is also related to the large volume of work (32, 41–53) 
focused on developing deep learning models for breast cancer 
detection. Although the tasks of cancer detection and future cancer 
risk are distinct, we hypothesize that some of the technical lessons from 
the two tasks can be complementary. For instance, we hypothesize 
that aggressive model ensembling strategies used by (32, 53, 54) and 
the use of detailed cancer region annotations could be used to im-
prove image-based risk models. Moreover, we hypothesize that our 
mechanisms for predicting risk at multiple time points, optionally 
using risk factors, and learning representations that are invariant to 

Table 2. Sensitivity and specificity of different risk models in 
identifying high-risk cohorts. We excluded screening positive 
mammograms. In this analysis, we defined a screening positive 
mammogram as one followed by a cancer diagnosis within 6 months. 
Thresholds were chosen to match the specificity of the Tyrer-Cuzick 
lifetime risk on the MGH development set. Thresholds marked with * were 
chosen to best match the specificity of Mirai on the respective test set. All 
metrics are followed by their 95% confidence interval. 

Method Use risk 
factors

High risk 
threshold Sensitivity Specificity

Dataset MGH: 9284 examinations from 3957 patients;  
441 examinations followed by future cancer

  Tyrer-Cuzick 
lifetime risk Yes 20% 22.9% 

(15.9–29.6)
85.4% 

(84.1–86.6)

  Image-Only  
DL (25) No 3.4% 32.9% 

(26.1–39.4)
85.9% 

(84.8–86.9)

  Hybrid DL (25) Yes 3.4% 36.1% 
(29.1–42.9)

86.0% 
(84.9–87.1)

  Mirai 5-year risk
No 2.6% 39.7% 

(32.9–46.5)
85.2% 

(84.1–86.4)

Yes 3.0% 41.5% 
(34.4–48.5)

85.6% 
(84.5–86.8)

Dataset Karolinska: 7194 examinations from 5707 patients; 
869 examinations followed by future cancer

  Image-Only DL (25) No
3.4% 0.6% 

(0.0–0.7)
99.9% 

(99.9–100.0)

1.3%* 18.9% 
(15.6–22.1)

93.1% 
(92.4–93.8)

  Mirai 5-year risk No 2.6% 26.0% 
(22.4–29.6)

93.1% 
(92.4–93.9)

Dataset CGMH: 11,167 examinations from 11,167 patients; 
139 examinations followed by future cancer

  Image-Only DL (25) No
3.4% 2.2% 

(0.7–4.3)
99.9% 

(99.9–100.0)

1.2%* 24.5% 
(16.9–31.3)

88.5% 
(87.9–89.1)

  Mirai 5-year risk No 2.6% 37.4% 
(29.3–45.5)

88.5% 
(88.0–89.2)

Fig. 4. ROCs of different risk models in identifying high-risk cohorts. MGH (left), Karolinska (middle), and CGMH (right) cohorts are shown. These datasets are restrict-
ed to include patients who were screening negative and had either cancer within 5 years or 5 years of negative follow-up. The orange and purple curves refer to Mirai with 
and without risk factors, respectively.
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mammography machines could be used to improve the current state 
of the art in cancer detection systems.

Although Mirai can be tested as a cancer detection system, direct 
comparison to prior work in cancer detection is difficult due to a lack 
of publicly available code (53, 55) and the lack of common bench-
marks. Not directly comparable, we note that Mirai obtained a 1-year 
AUC of 0.90 on the Karolinska test set, similar to the top single-
model AUC 0.90 on a separate Karolinska test set reported by (54). 
We also evaluated Image-and-Heatmaps (32), a recently proposed 
cancer detection model trained to predict cancer within 120 days, 
on a large dataset from NYU. Image-and-Heatmaps obtained a 120-day 
AUC of 0.89 on the NYU test set (32), and it obtained a 1-year AUC 
of 0.78 on the MGH test set. We note that it is difficult to compare 

this model with our own because of the difference in study objec-
tives and training datasets. These results further highlight the 
importance of creating common benchmarks with standardized 
evaluation to enable direct comparison between models. We believe 
that sharing trained models is important for the continued develop-
ment of cancer detection and risk assessment systems, and to this 
end, we are releasing our code and models for public research use.

There are multiple directions for future work that can further 
improve the accuracy and utilization of the imaging-based models 
for cancer risk. Although our model only considers a patient’s current 
mammogram agnostic of previous imaging, it is known that changes 
in imaging over time contain a wealth of information. A natural next 
step is to develop methods that can effectively use a patient’s full 

Table 3. Detailed demographics for the MGH dataset. For each demographic, we report the number of corresponding mammography examinations and the 
percentage they constitute of the total. All cancer counts reflect cancer within 5 years. 

MGH training set MGH validation set MGH test set

Characteristics All Cancer All Cancer All Cancer

All examinations 210,819 (100%) 5379 (100%) 25,644 (100%) 612 (100%) 25,855 (100%) 588 (100%)

Age

  <40 5,812 (2.8%) 84 (1.6%) 711 (2.8%) 7 (1.1%) 724 (2.8%) 7 (1.1%)

  40–50 55,905 (26.5%) 1113 (20.7%) 6,821 (26.6%) 142 (23.2%) 7,025 (27.2%) 95 (16.2%)

  50–60 63,314 (30.0%) 1348 (25.1%) 7,762 (30.3%) 166 (27.1%) 7,829 (30.3%) 188 (32.0%)

  60–70 54,925 (26.1%) 1770 (32.9%) 6,674 (26.0%) 179 (29.3%) 6,708 (25.9%) 182 (31.0%)

  70–80 25,401 (12.0%) 816 (15.2%) 3,037 (11.8%) 102 (16.7%) 3,001 (11.6%) 94 (16.0%)

  >80 5,461 (2.6%) 248 (4.5%) 639 (2.5%) 16 (2.6%) 568 (2.2%) 22 (3.7%)

Density

  Almost entirely fatty 20,411 (9.7%) 315 (5.9%) 2,429 (9.5%) 53 (8.7%) 2,474 (9.6%) 31 (5.3%)

  Scattered areas of 
fibroglandular 
tissue

102,112 (48.4%) 2623 (48.8%) 12,519 (48.8%) 261 (42.7%)

12,490 (48.3%) 264 (44.9%)

  Heterogeneously 
dense

78,892 (37.4%) 2196 (40.8%) 9,461 (36.9%) 263 (43.0%)
9,751 (37.7%) 271 (46.1%)

  Extremely dense 9,293 (4.4%) 242 (4.5%) 1,225 (4.8%) 35 (5.7%) 1,129 (4.4%) 22 (3.7%)

BI-RADS

  0–additional 
imaging needed 13,810 (6.6%) 1579 (29.4%) 1,686 (6.6%) 164 (26.8%) 1,785 (6.9%) 186 (31.6%)

  1–negative or  
2–benign 196,797 (93.3%) 3786 (70.4%) 23,932 (93.3%) 447 (73.0%) 24,043 (93.0%) 400 (68.0%)

Other 47 (0.02%) 9 (0.2%) 3 (0.01%) 1 (0.2%) 4 (0.01%) 1 (0.2%)

Race

  White 171,509 (81.4%) 4646 (86.4%) 20,710 (80.8%) 518 (84.6%) 21,006 (81.2%) 512 (87.1%)

  African American 9,883 (4.7%) 209 (3.9%) 1,209 (4.7%) 26 (4.3%) 1,204 (4.7%) 21 (3.6%)

  Asian or Pacific 
Islander

9,477 (4.5%) 160 (3.0%) 1,231 (4.8%) 17 (2.8%)
1,238 (4.8%) 26 (4.4%)

  Hispanic 2,266 (1.1%) 63 (1.2%) 260 (1.0%) 5 (0.8%) 225 (0.9%) 6 (1.0%)

  Other race 11,423 (5.4%) 138 (2.6%) 1,439 (5.6%) 20 (3.3%) 1,486 (5.7%) 15 (2.6%)

Device

  Lorad Selenia 81,106 (38.5%) 2009 (37.4%) 9,850 (38.4%) 216 (35.29%) 9,937 (38.4%) 241 (41.0%)

  Selenia Dimensions 129,493 (61.4%) 3150 (58.6%) 15,767 (61.5%) 369 (60.29%) 15,882 (61.4%) 311 (52.9%)

  Unknown 220 (0.1)% 220 (4.1%) 27 (0.1%) 27 (4.4%) 36 (0.1%) 36 (6.1%)
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history of imaging. In a similar fashion, expanding the model to use 
tomosynthesis is likely to yield further performance improvements. 
Beyond work in improving accuracy, additional research is required 
to determine how to adapt image-based risk models to different 
mammography devices across multiple vendors. Although our condi-
tional adversarial training scheme enabled us to obtain consistent risk 
assessments across mammography devices where we have training 
data, we did not evaluate whether our models can generalize to un-
seen mammography devices. In addition, although our own evaluation 
focused on defining high-risk cohorts, other methods are required 
to design more fine-grained risk-based guidelines.

This study has limitations. Although our analysis showed Mirai 
obtained strong performance across different races, our datasets con-
tained few African American and Hispanic women, making up 5 and 
1% of the MGH test set, respectively. More work is needed to further 
validate the model in large Hispanic and African American screening 
populations. Moreover, prospective trials are necessary to measure the 
impact of these models on clinical care before widespread adoption.

MATERIALS AND METHODS
Study design
The primary objectives of this study were to develop a model to as-
sess breast cancer risk and to validate its performance across diverse 
populations and clinical settings. We designed and benchmarked our 
algorithm, Mirai, against the Tyrer-Cuzick model and other deep 
learning models trained on the same MGH dataset, namely, Image-Only 
DL and Hybrid DL, in predicting future risk. Although Mirai was 
trained to predict both first-time cancer cases and recurrences, we 
limited our analysis to patients without a prior history of breast 
cancer to enable a fair comparison against the Tyrer-Cuzick model. 
Our secondary objective was to demonstrate the ability of Mirai to 
identify high-risk cohorts and to compare it with alternative risk 
models.

To develop Mirai, we collected consecutive screening mammo-
grams from 80,134 patients screened between 1 January 2009 and 
31 December 2016 at the MGH under approval of the MGH’s Insti-

tutional Review Board and in compliance with the Health Portability 
and Accountability Act. Mammograms were taken either on a Selenia 
Dimensions device (Hologic) or a Lorad Selenia device (Hologic). 
We obtained outcomes through linkage to a local five-hospital registry 
in the Massachusetts General Brigham healthcare system, alongside 
pathology findings from MGH’s mammography electronic medical 
record. We excluded patients who did not have at least 1 year of 
screening follow-up who were diagnosed with other cancers such as 
sarcomas of the breast, or who did not have all four views (L CC, 
L MLO, R CC, and R MLO), to identify 70,972 patients. Patients were 
randomly split into n = 56,786 for training, n = 7020 for develop-
ment, and n = 7166 for testing. To enable fair comparison against 
the Tyrer-Cuzick model, we excluded 161 patients with prior histo-
ry of breast cancer from the test set, leaving 7005 patients. Because 
each patient had multiple examinations, this resulted in 210,819, 
25,644, and 25,855 examinations for training, development, and 
testing, respectively. We refer to an examination as “positive” if it was 
followed by a pathology-confirmed cancer diagnosis within 5 years. 
We collected detailed risk factors, including those used by the TCv8, 
from provider- and patient-entered information in the mammography 
reporting system and associated each mammogram with patient 
risk factors as they were present at the time of mammography. De-
tailed demographics are shown in Table 3, and our data collection 
procedure is illustrated in Fig. 4.

To evaluate the ability of Mirai to generalize to additional popu-
lations, we collected the Karolinska and CGMH datasets under 
approval of the relevant institutional review boards. The Karolinska 
dataset was extracted from the Cohort of Screen-Aged Women (56). 
All women aged 40 to 74 within the Karolinska University uptake 
area who had attended screening and were diagnosed with breast 
cancer, without implants and without prior breast cancer, from 
2008 to 2016 were included, as well as a random sample of controls 
with at least 2 years of follow-up from the same time period. The full 
Karolinska case-control dataset included 11,301 women, and 70% 
of both cases and controls were randomly selected for inclusion in 
this study. We included all mammograms, acquired on Hologic 
machines, from 2008 to 2016 for the included women that contained 

Table 4. Demographics of Karolinska and CGMH test sets. For each demographic, we report the number of corresponding mammography examinations and 
the percentage they constitute of the total. All cancer counts reflect cancer within 5 years. 

Karolinska dataset Chang Gung Memorial dataset

Characteristics All Cancer All Cancer

All examinations 19,328 (100%) 1413 (100%) 13,356 (100%) 244 (100%)

Age

  40–50 7,814 (40.4%) 364 (25.8%) 4,008 (30.0%) 74 (33.3%)

  50–60 5,477 (28.3%) 387 (27.4%) 6,301 (47.2%) 115 (47.1%)

  60–70 5,174 (26.8%) 563 (39.8%) 3,042 (22.8%) 55 (22.5%)

  70–80 863 (4.4%) 99 (7.0%) 0 (0.0%) 0 (0.0%)

Density as assessed by deep learning model (57)

  Almost entirely fatty 933 (4.8%) 39 (2.7%) 51 (0.4%) 0 (0.0%)

  Scattered areas of 
fibroglandular tissue 9,767 (50.5%) 682 (48.3%) 3,272 (24.5%) 40 (16.4%)

  Heterogeneously dense 8,057 (41.7%) 655 (46.4%) 9,278 (69.5%) 194 (79.5%)

  Extremely dense 571 (3.0%) 37 (2.6%) 755 (5.7%) 10 (4.1%)
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all four views (L CC, L MLO, R CC, and R MLO), resulting in 19,328 
examinations from 7353 patients. To create the CGMH dataset, we 
selected random women undergoing screening mammography there 
between 2010 and 2011 who were aged 45 to 70 or were aged 40 to 
44 and had a family history of breast cancer, resulting in 13,356 ex-
aminations from 13,356 patients. Cancer outcomes were obtained 
from the national cancer registry. In both datasets, we excluded pa-
tients who did not have at least 1 year of screening follow-up or did 
not have all four views (L CC, L MLO, R CC, and R MLO). We ob-
tained mammographic breast density assessments for both the 
Karolinska and CGMH datasets using a clinically validated deep 
learning model trained on the MGH dataset (57, 58). More details 
about these datasets are available in Table 4 and Fig. 4. We emphasize 
that the Karolinska and CGMH datasets were only used for testing. 

Statistical analysis
We evaluated all models by the AUC for 1- to 5-year outcomes. For 
instance, to compute the 3-year AUC, we considered a mammogram 
as positive if it was followed by a cancer diagnosis within 3 years 
and negative if it had at least 3 years of screening follow-up. Table 
S8 describes the distribution of follow-up and cancer times for each 
dataset. We also calculated Uno’s C-index (59), which offers a gen-
eralized AUC across all time points. To address that patients may 
have multiple examinations, we used a clustered bootstrap approach 
with 5000 samples to calculate confidence intervals. To assess the 
significance of the difference between two AUCs, we used the paired 
DeLong’s test (60) as implemented in the pROC package in R (61). 
To assess the significance of the difference between two ratios, we 
used a two-tailed t test as implemented in R (62). For both tests, we 
used a predefined P < 0.05 for significance.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/578/eaba4373/DC1
Materials and Methods
Fig. S1. t-SNE plot for Mirai’s hidden representation (left) without and (right) with adversarial 
training on 5000 random samples from the MGH test set.
Fig. S2. Saliency scores of images and all clinical risk factors across the MGH test set.
Fig. S3. t-SNE plots for Mirai’s hidden representation colored by cancer subtype factors on 
1000 random positive examinations from the Karolinska test set.
Table S1. The distribution of clinical risk factors in the MGH dataset.
Table S2. ROC AUCs and C-indices for Mirai and prior risk models on all test sets excluding 
cancers confirmed within 6 months of the screening mammogram.
Table S3. Ablation study of Mirai on the MGH datasets.
Table S4. C-index for different models on different subpopulations in the MGH test set.
Table S5. C-indices and ROC AUCs for Mirai in predicting cancers of different subtypes in the 
Karolinska test set.
Table S6. Number of examinations per cancer type in the Karolinska dataset.
Table S7. Sensitivity and specificity of different risk models in identifying high-risk cohorts at 
MGH, excluding mammograms with a BI-RADS 0 assessment that were followed by a cancer 
diagnosis within 1 year.
Table S8. Distribution of follow-up times and times until cancer diagnosis for examinations in 
the MGH, Karolinska, and CGMH test sets.
Data file S1. Primary data from figures.
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across the board.
performed similarly across race and ethnicity categories, suggesting the potential for improvement in patient care
identifying both 5-year breast cancer risk and high-risk patients across multiple international cohorts. Mirai also 
mammograms. The authors' risk model performed better than Tyrer-Cuzick and previous deep learning models at
developed a machine learning model called ''Mirai'' to predict breast cancer risk based on traditional 

et al.cancer screening guidelines all use a component of cancer risk assessment to inform clinical course. Yala 
Mammograms are a common but imperfect way of assessing breast cancer risk. Current U.S. breast
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