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Mammography is the only imaging modality shown to 
reduce breast cancer mortality in randomized trials 

(1–8). Despite its benefits, challenges include variation in 
interpretive performance and the scarcity of specialized ra-
diologists (9,10). A recent report of mammography screen-
ing performance in U.S. community practice demonstrat-
ed that radiologists’ diagnostic performance ranged from 
66.7% to 98.6% for sensitivity and from 71.2% to 96.9% 
for specificity (11). False-negative examinations can result 
in delayed diagnosis, and false-positive examinations can 
lead to unnecessary procedures, impacting both patient ex-
perience and overall costs. Moreover, the ability of special-
ized radiologists to serve the global population of women 
eligible for breast cancer screening is limited by workflow 
inefficiencies (12,13).

Both technologic and workflow solutions have been 
proposed to improve radiologist interpretive performance 
and efficiency. Computer-aided detection (CAD), which 

detects and marks suspicious findings on mammograms, 
aims to improve radiologist sensitivity. Although tradi-
tional approaches have not demonstrated improved radi-
ologist performance in sensitivity or specificity in clinical 
practice (14–16), a more recent deep learning approach 
to CAD has shown promise in improving sensitivity in a 
reader study (17). However, this does not address limita-
tions in radiologist specificity or efficiency. Double reading 
(ie, having two radiologists interpret the same mammo-
gram) has also been implemented to improve radiologist 
performance. Although some studies demonstrate slight 
improvements in sensitivity, double reading worsens work-
flow efficiency and increases false-positive examination re-
sults (18,19).

We hypothesized that a deep learning model trained 
to triage mammograms as cancer free can improve radi-
ologist efficiency and specificity without harming sensi-
tivity. Specifically, we trained a model to predict cancer 
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Background: Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations 
in radiologist specificity or efficiency.

Purpose: To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow 
efficiency.

Materials and Methods: In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from 
January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This 
cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training, 
validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test 
set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as 
negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists’ assessments. 
Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage–simulated work-
flow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by 
using a two-tailed t test (P , .05) and sensitivities were compared by using a one-sided t test with a noninferiority margin of 5% (P 
, .05).

Results: The test set included 7176 women (mean age, 57.8 years 6 10.9 [standard deviation]). When reading all mammograms, 
radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 
95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 
191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of 
the mammograms. The simulated workflow improved specificity (P = .002) and obtained a noninferior sensitivity with a margin of 
5% (P , .001).

Conclusion: This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without 
harming sensitivity.
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directly from full-resolution mammograms and chose a high 
sensitivity threshold to identify a subset of cancer-free patients 
with near-perfect accuracy. We simulated the scenario in which 
all patient examinations below this threshold are interpreted as 
negative for cancer and those above the threshold are read by 
radiologists who specialize in breast imaging.

Materials and Methods
Our retrospective study was approved by our institutional review 
board (with a waiver for the need to obtain written informed 
consent) and was compliant with the Health Insurance Porta-
bility and Accountability Act. Mammograms from 60 886 of 
the 80 818 women in our patient population were previously 
reported (20,21). Our previously published work focused on the 
development of breast density and 5-year breast cancer risk algo-
rithms, whereas this article focuses on a deep learning model to 
triage a subset of mammograms as cancer free.

Data Collection
We collected consecutive digital screening mammograms 
(Selenia Dimensions and Selenia; Hologic, Bedford, Mass) 
from 80 818 patients screened between January 1, 2009, and 
December 31, 2016, at a large tertiary academic medical cen-
ter. Outcomes were obtained through linkage to tumor regis-
tries of five hospitals (academic and general) within our health 
care system, supplemented with pathologic findings from our 
mammography information system electronic medical record 
(MagView, version 8.0.143; Magview, Burtonsville, Md). Out-
comes were not linked to the state tumor registry.

Among the initial 80 818 patients, we selected women 
who had either a diagnosis of breast cancer within 1 year 
or imaging follow-up for at least 1 year from the date of 
the index mammogram. We excluded 14 056 women lack-
ing sufficient follow-up and 101 women because they had 
another form of cancer in their breast. We did not perform 

exclusions based on prior surgery, age, implants, atypical le-
sions, or prior cancers. The remaining 66 661 women were 
randomly assigned to 56 831 for training, 7021 for valida-
tion, and 7176 for testing. This resulted in training, valida-
tion, and test sets of 212 272, 25 999, and 26 540 mam-
mograms, respectively (Fig 1). We emphasize that we split 
our data set by patients, and so each woman contributed 
mammograms to only one set.

Development of Deep Learning Model
In-depth information about our deep learning (DL) model 
and its training is presented in Appendix E1 (online), and 
code is available for research use at http://learningtocure.csail.
mit.edu. In brief, we implemented our model as a deep con-
volutional neural network (ResNet18 [22]) with PyTorch 
(version 0.31; https://pytorch.org). Given a 1664 3 2048 pixel 
view of a breast, the model was trained to predict whether 
or not that breast would develop breast cancer within 1 year. 
The model makes independent predictions for each view, and 
we took the maximum predicted score across views to get the 
prediction for the examination.

To leverage the trained probabilistic model to triage mam-
mograms, we chose a high-sensitivity threshold on the val-
idation set. Specifically, we set the model threshold to the 
minimum probability score of a radiologist true-positive as-
sessment on the validation set. This procedure maximizes the 
mammograms triaged while not decreasing sensitivity on the 
validation set.

Evaluating Our Model for Independent Prediction
We evaluated the overall discrimination accuracy of the DL 
model when used independently through the area under the 
receiver operating curve (AUC) and evaluated model calibra-
tion through observed-to-expected ratios. We computed AUCs 
and observed-to-expected ratios across the entire held-out test 
set as well as subgroups based on age, race, and Breast Imaging 
Reporting and Data System, or BI-RADS, density category. 
Specifically, we reported the AUC and observed-to-expected 
ratios in patients in their 40s, 50s, 60s, and 70s or older; pa-
tients who are African American, Asian or Pacific Islander, 
white, or other; and patients with fatty, scattered, heteroge-
neously dense, or extremely dense breasts.

Evaluating Our Model for Triage
All mammograms in our test set were read by one of 23 fellow-
ship-trained or equivalent breast imaging radiologists with 
between 1 year to 31 years of experience through routine clinical 
operations between 2009 to 2016. To evaluate our model for 
triage, we simulated the scenario in which the radiologist did 
not read any mammogram below the model’s high-sensitivity 
“cancer-free” threshold, and read the rest of the mammograms 
as before. Specifically, all mammograms below the model 
threshold were assessed as negative for cancer in the simulation, 
and mammograms above the threshold were given the original 
interpreting radiologist’s BI-RADs assessment as obtained 
from our electronic medical record. This simulation scenario 
is illustrated in Figure 2. We calculated the overall sensitivity, 

Abbreviations
AUC = area under the receiver operating characteristic curve, CAD = 
computer-aided detection, CI = confidence interval, DL = deep learning

Summary
In a simulation study, a deep learning model to triage mammograms 
as cancer free improves workflow efficiency and significantly im-
proves specificity while maintaining a noninferior sensitivity.

Key Results
 n After training and validation on 238 271 mammograms, a deep 

learning model triaged 19% of screening mammograms as cancer 
free, improving specificity (93.5%–94.3%; P = .002) and obtain-
ing a noninferior sensitivity (90.6%–90.1%; P , .001) in a retro-
spective simulation.

 n The deep learning model had similar predictive accuracies for all 
age groups; the area under the receiver operating characteristic 
curve (AUC) for women in their 40s, 50s, 60s, and 70s or older 
were 0.80, 0.83, 0.82, 0.79, and 0.86, respectively.

 n The deep learning model was effective for women with a range of 
breast density (AUCs of 0.82, 0.81, 0.85, and 0.71 for women 
with fatty, scattered, heterogeneously, and extremely dense breasts, 
respectively).
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0.81 (95% CI: 0.66, 0.99), respectively. Moreover, the model 
was discriminative for both women with and women with-
out dense breasts, with AUCs of 0.82 (95% CI: 0.71, 0.94), 

specificity, and the percentage of mammograms 
read by the radiologists in the simulated DL-triage 
workflow versus the standard workflow in which 
radiologists interpreted all mammograms.

To illustrate the relationship between radiolo-
gist assessments and model probabilities, we pro-
vide histograms of the radiologists’ true-positive, 
true-negative, false-positive, and false-negative 
assessments as ranked by the model-assessed 
probability of cancer, and highlight examina-
tions triaged as cancer free by the DL model. 
Finally, we computed the demographics for pa-
tients bellow and above the model threshold and 
calculated demographic-specific sensitivities and 
specificities in the DL-triage workflow versus the 
standard workflow.

Statistical Analysis
We used scikit-learn (version 0.19.1; https://scikit-
learn.org) for our statistical analyses and computed 
all statistics across 5000 bootstrap samples to ob-
tain confidence intervals (CIs). To account for 
patients appearing in our test set multiple times, 
we used the cluster bootstrap procedure (23). We 
compared demographics and specificities with and 
without triage by using a two-tailed t test (P , 
.05). We compared sensitivities with and without 
triage by using a one-sided t test with a 5% inferi-
ority margin (P , .05).

Results

Patient Demographics and Outcomes
Detailed patient demographics and outcomes for the training, 
validation, and held-out test sets are shown in Table 1. The 
training set, validation set, and testing set consisted of 56 831, 
7021, and 7176 patients and 212 276, 25 841, and 26 540 
mammograms, respectively. The training, validation, and test 
sets had mean follow-ups of 3.76 years 6 2.12, 3.73 years 
6 2.12, and 3.74 years 6 2.11, respectively. A total of 0.7% 
(1472 of 212 276), 0.6% (167 of 25 841), and 0.7% (191 of 
26 540) of mammograms were followed by a cancer diagnosis 
within 1 year, respectively.

Evaluating Our Model for Independent Prediction
The model obtained an AUC of 0.82 (95% CI: 0.80, 0.85) 
and an observed-to-expected ratio of 1.15 (95% CI: 0.97, 
1.31) on our test set (Table 2). The receiver operating char-
acteristic curve is shown in Figure 3. The model had similar 
predictive accuracies for all age groups and races (Table 2). 
The AUC of women in their 40s, 50s, 60s, and 70s or older 
was 0.80 (95% CI: 0.73, 0.89), 0.83 (95% CI: 0.77, 0.89), 
0.82 (95% CI: 0.77, 0.88), 0.79 (95% CI: 0.71, 0.87), and 
0.86 (95% CI: 0.75, 1.00), respectively. Similarly, the AUCs 
for women who were African American, Asian or Pacific Is-
lander, white, and other were 0.86 (95% CI: 0.73, 1.00), 
0.80 (95% CI: 0.60, 1.00), 0.82 (95% CI: 0.79, 0.86), and 

Figure 1: Flowchart shows cohort selection. From 282 638 consecutive screening 
mammograms performed between January 1, 2009, and December 31, 2016, a 
set of 223 109 examinations was selected after excluding examinations of patients 
who developed other cancers in breast or lacked 1-year follow-up. Positive examina-
tions correspond to those followed by cancer diagnosis within 1 year and negative 
examinations correspond to examinations that were not followed by cancer diagno-
sis within 1 year. Additional exclusions were not performed.

Figure 2: Diagram illustrates experimental setup for triage analysis. 
In standard scenario, radiologists read all mammograms. In deep 
learning (DL)–triage scenario, radiologists only read mammograms 
above model cancer-free threshold. To simulate both scenarios, 
original interpreting radiologist’s assessment on test set was used for 
radiologist read.
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margin of 5% (P , .001). Further analysis for alternative 
choices of triage threshold is available in Table E2 and Ap-
pendix E1 (online).

Radiologist Assessments by Model Probability of 
Cancer
The relationship between the DL model probabilities, the 
choice of threshold, and radiologists’ true-positive, true-negative,  
false-positive, and false-negative assessments are plotted in 
Figure 4. Of the 5120 mammograms triaged as cancer free, 
one was a radiologist false-negative assessment and one was a 
radiologist true-positive assessment. In total, 96.6% (4947 of 
5120) of triaged mammograms were radiologist true-negative 
assessments and 3.4% (171 of 5120) were radiologist false-
positive assessments. Four random examples of mammograms 
triaged below and above the DL model threshold are shown in 
Figure 5. Of radiologists’ false-negative examinations, 66.7% 
(12 of 18) were assigned probability of cancer in the upper 
quartile of all examinations (75% and higher) by the model.

Demographics by Triage: Age
Demographics of patients below and above the DL mod-
els’ high-sensitivity threshold on our test set are shown in 
Table 4. Of the 5120 mammograms triaged as cancer free, 
there was one case of cancer in a patient in their 40s and 
one other case of a patient in their 50s. The overall age dis-
tributions for patients below and above the threshold were 
similar. Among patients triaged as cancer free, 29.2% (1497 

0.81 (95% CI: 0.76, 0.86), 0.85 (95% CI: 0.81, 0.89), and 
0.71 (95% CI: 0.50, 0.95) for women with fatty, scattered, 
heterogeneously, and extremely dense breasts, respectively. 
Although the AUC for women with extremely dense breast 
appeared lower at 0.71 than the rest of the subgroups, this 
population was relatively small with seven cancers in 1151 
examinations as reflected by the wide CI from 0.50 to 0.95. 
We note that the receiver operating characteristic curve in 
Figure 3 and the AUCs above depict the model being used for 
independent prediction, that is, considering all examinations 
above a threshold as positive and those below the threshold 
as negative for all possible thresholds. This is distinct from 
our triage assessment, which leverages radiologist assessments 
above the model threshold.

Evaluating Our Model for Triage
When reading 100% of the mammograms, the original in-
terpreting radiologists obtained a sensitivity and specific-
ity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 
93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%), respec-
tively, within our test set. In our simulation of using the 
DL model for triage, the radiologists would have obtained 
a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 
86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 
94.0%, 94.6%), respectively, while reading 80.7% (21 420 
of 26 540; 95% CI: 80.0%, 81.5%) of all mammograms 
(Table 3). The increase in specificity was statistically sig-
nificant (P = .002) and the sensitivity was noninferior by a 

Table 1: Patient Demographics and Outcomes in Training, Validation, and Testing Sets

Variable Training Examinations Validation Examinations Test Examinations P Values*
Total 212 276, 1472 (100, 0.7) 25 841, 167 (100, 0.6) 26 540, 191 (100, 0.7) N/A
Age (y)
 Less than 40 5856, 26 (2.8, 0.4) 719, 3 (2.8, 0.4) 732, 3 (2.8, 0.4) ..99, .87
 40–50 56 336, 299 (26.5, 0.5) 6868, 35 (26.6, 0.5) 7162, 36 (27.0, 0.5) .12, .29
 50–60 63 747, 386 (30.0, 0.6) 7825, 48 (30.3, 0.6) 8022, 52 (30.2, 0.6) .51, .89
 60–70 55 285, 426 (26.0, 0.8) 6729, 49 (26.0, 0.7) 6923, 62 (26.1, 0.9) .89, .91
 70–80 25 555, 249 (12.0, 1.0) 3058, 27 (11.8, 0.9) 3100, 30 (11.7, 1.0) .09, .59
 Greater than 80 5496, 86 (2.6, 1.6) 642, 5 (2.5, 0.8) 601, 8 (2.3, 1.3) .002, .10
Race
 African American 9976, 55 (4.7, 0.6) 1215, 5 (4.7, 0.4) 1225, 7 (4.6, 0.6) .54, .64
 Asian or Pacific Islander 9538, 54 (4.5, 0.6) 1245, 6 (4.8, 0.5) 1260, 7 (4.7, 0.6) .06, .71
 White 172 625, 1265 (81.3, 0.7) 20 864, 142 (80.7, 0.7) 21 609, 168 (81.4, 0.8) .70, .06
 Other 20 137, 98 (9.5, 0.5) 2517, 14 (9.7, 0.6) 2446, 9 (9.2, 0.4) .16, .04
Density
 1, fatty 20 581, 82 (9.7, 0.4) 2453, 13 (9.5, 0.5) 2519, 10 (9.5, 0.4) .29, ..99
 2, scattered 102 734, 698 (48.4, 0.7) 12 596, 75 (48.7, 0.6) 12 851, 83 (48.4, 0.6) .94, .46
 3, heterogeneously dense 79 477, 623 (37.4, 0.8) 9546, 70 (36.9, 0.7) 10 007, 91 (37.7, 0.9) .40, .07
 4, extremely dense 9371, 66 (4.4, 0.7) 1235, 9 (4.8, 0.7) 1151, 7 (4.3, 0.6) .56, .02
Original radiologist’s BI-RADS  
  assessment
 0 13 818, 1254 (6.5, 9.1) 1688, 132 (6.5, 7.8) 1848, 172 (7.0, 9.3) .005, .05
 1, 2 197 993, 208 (93.2, 0.1) 24 091, 35 (93.2, 0.1) 24 625, 17 (92.8, 0.1) .003, .05

Note.—Unless otherwise specified, data are the count of all mammograms and count of mammograms positive for breast cancer, with the 
percentage of data set and percentage of cancers in parentheses. BI-RADS = Breast Imaging Reporting and Data System, N/A = not available.
* Indicates training versus test set, and validation versus test set.
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(970 of 26 540), 4.7% (1009 of 26 540), and 8.6% (1848 
of 26 540) above the threshold (Table 4). Although fewer 
white women were triaged as cancer free by the DL model, 
this was expected given that white women had the highest 
cancer incidence on the test set, with incidences of 0.8%, 
0.6%, 0.6%, 0.7%, and 0.4% for women who were white, 
African American, Asian or Pacific Islander, and other, re-
spectively (Table 1).

Demographics by Triage: Breast Density
Of the mammograms falling below the threshold, 20.6% 
(1057 of 5120) were assessed as fatty breast density and 
54.3% (2779 of 5120) were assessed as scattered fibroglan-
dular density, compared with 6.8% (1462 of 26 540) and 
47.0% (10 072 of 26 540), respectively, for mammograms 
above the threshold (Table 4). This also matched to a rela-
tively lower incidence of breast cancer for women with non-
dense breasts in our test set, with incidence rates of 0.4% 
and 0.6% for women with fatty and scattered fibroglandu-
lar breast densities, respectively, compared with the overall 
incidence of 0.7% (191 of 26 540) (Table 1). Of the 5120 
mammograms triaged as cancer free, the two cases of cancer 
had mammographic density assessments of heterogeneously 
dense and scattered fibroglandular density.

of 5120) and 32.1% (1641 of 5120) were in their 40s and 
50s, respectively, compared with 26.4% (5665 of 21 420) 
and 29.8% (6381 of 21 420) of women above the DL model 
threshold. Although more young patients were triaged as 
cancer free, this trend was expected given the relatively 
lower incidence of cancer in these age groups on the test set, 
with 0.5% (36 of 7162) and 0.6% (52 of 8022) diagnosed 
with cancer, respectively, compared with the overall rate of 
0.7% (191 of 26 540) (Table 1).

Demographics by Triage: Race
Of the 5120 mammograms triaged as cancer free, the two 
cases of cancer were in white patients. The overall distribu-
tion by race was similar below and above the threshold. The 
patients below the model threshold were 78.6% (4016 of 
5120) white, 5% (255 of 5120) African American, 5% (257 
of 5120) Asian or Pacific Islander, and 11.5% (592 of 5120) 
other, compared with 82.1% (17 593 of 26 540), 4.5% 

Table 2: AUCs and Observed-to-Expected Ratios for 
Different Cohorts in the Test Set

Cohort AUC
Observed-to- 
Expected Ratio

Full test set 0.82 (0.80, 0.85) 1.15 (0.97, 1.31)
Age (y)
 40–50 0.80 (0.73, 0.89) 1.00 (0.65, 1.32)
 50–60 0.83 (0.77, 0.89) 0.98 (0.68, 1.24)
 60–70 0.82 (0.77, 0.88) 1.38 (1.04, 1.70)
 70–80 0.79 (0.71, 0.87) 1.22 (0.79, 1.60)
 Greater than 80 0.86 (0.75, 1.00) 1.27 (0.37, 2.05)
Race
 African American 0.86 (0.73, 1.00) 0.93 (0.19, 1.57)
 Asian or Pacific Islander 0.80 (0.60, 1.00) 1.16 (0.22, 1.95)
 White 0.82 (0.79, 0.86) 1.21 (1.03, 1.39)
 Other 0.81 (0.66, 0.99) 0.67 (0.22, 1.05)
Density
 1, fatty 0.82 (0.71, 0.94) 0.97 (0.31, 1.53)
 2, scattered 0.81 (0.76, 0.86) 1.05 (0.82, 1.27)
 3, heterogeneously dense 0.85 (0.81, 0.89) 1.32 (1.04, 1.58)
 4, extremely dense 0.71 (0.50, 0.97) 0.91 (0.12, 1.52)

Note.— Test set consists of 26 540 examinations from 7176 pa-
tients. Data in parentheses are 95% confidence intervals. AUC =  
area under receiver operator characteristic curve.

Table 3: Sensitivity, Specificity, and Portion of Mammograms Read on the Test Set

Setting Sensitivity (%) Specificity (%) Mammograms Read (%)
Original interpreting radiologist  

reading all images
90.6 (173/191) [86.6, 94.7] 93.6 (24 625/26 349) [93.3, 93.9] 100 (26 540/26 540) [100, 100]

Original interpreting radiologist  
+ deep learning triage (reading  
mammograms not triaged as cancer 
free)

90.1 (172/191) [86.0, 94.3] 94.3 (24 814/26 349) [94.0, 94.6] 80.7 (21 420/26 540)[80.0, 81.5]

Note.— Data in parentheses are numerators and denominators, with 95% confidence intervals in brackets.

Figure 3: Graph shows receiver operating characteristic curve of 
deep learning (DL) model making independent predictions on test set. 
Area under receiver operator characteristic curve of DL model is 0.82 
(95% confidence interval: 0.80, 0.85).
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Evaluating Triage by Demographic
Demographic-wise sensitivities and specificities 
as well as P values regarding their differences are 
reported in Table E1 (Appendix E1 [online]). 
Because only one triaged mammogram was a ra-
diologist true-positive assessment, the sensitivity 
was identical in almost all subgroups. Although 
the specificity was improved in all demographic 
subgroups, this improvement was significant for 
patients who were in their 40s (P = .02), were 
white (P = .01), or with breast density assessment 
of scattered fibroglandular density (P = .01).

Discussion
We developed a deep learning (DL) model to tri-
age mammograms as cancer free and to improve 
radiologist efficiency and specificity without im-
pacting sensitivity. In our simulated triage work-
flow, in which radiologists would only read mam-
mograms above the cancer-free threshold, our 
model showed a workload reduction of 19.3% 
(5120 of 26 540), a significant improvement in 
specificity (93.5%–94.2%; P = .002), and a nonin-
ferior sensitivity (90.6%–90.1%; P , .001). Our 
model was discriminative across all age groups, 
races, and breast density categories, suggesting the 
model may be widely applicable to diverse patient 
populations.

DL models for whole image classification are 
uniquely suited to triage mammograms due to 
their ability to both detect local areas of cancer 
(as shown in a DL-based computer-aided detec-
tion [CAD] model) (17) and their ability to as-
sess breast cancer risk (22). By simultaneously le-
veraging cues of both present cancers and future 
cancers that may not be visible, DL models are 
able to access a large portion of the population as 
cancer free without access to additional informa-
tion commonly available to radiologists, such as 
prior mammograms.

This work takes a substantial departure from 
prior work on CAD (14–16). Instead of annotat-
ing images to draw added attention to potentially 
malignant findings (to improve sensitivity), we 
propose to triage cancer-free mammograms from 
the workflow to improve both specificity and ef-
ficiency. For example, a reader study showed that 
a DL-based CAD model could improve sensitivity 
from 83% to 86% without impacting specificity 
or slowing image reading time (17). In contrast, 
our model improved specificity, improved effi-
ciency, and did not impact sensitivity. These two 
approaches (CAD and triage) may be compli-
mentary, giving more attention to mammograms 
that warrant it and removing attention from those 
that do not. The idea of triaging or “preselect-
ing” mammograms with a DL model has been 

Figure 4: Graphs show relationship between radiologist assessment, risk 
percentile of deep learning model, and cancer-free threshold in test set. (a) Ra-
diologist false-negative (FN) assessments triaged below and above cancer-free 
threshold by risk decile. (b) Radiologist false-positive (FP) assessments triaged 
below and above cancer-free threshold by risk decile. (c) Radiologist true-negative 
(TN) assessments triaged below and above cancer-free threshold by risk decile. 
(d) Radiologist true-positive (TP) assessments triaged below and above cancer-free 
threshold by risk decile.
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subset of cases suitable for single-human assessment. In more 
resource-constrained scenarios with insufficient specialized ra-
diologists, our model could identify the patients with highest 
risk and support more efficient resource allocation. In all para-
digms, reducing workload through examination triage can free 
radiologists to provide care in other critical areas not currently 
supported by artificial intelligence, such as performing image-
guided procedures, diagnostic testing, and patient interaction. 
In this realm, the model serves to enhance the overall impact of 
the radiologist on improved patient care.

In addition to its strong potential to improve workflow ef-
ficiency, our model supports improved diagnostic performance 
by triaging false-positive mammograms as cancer free. Recall 
rates from screening mammography have increased steadily 

Figure 5: Images show randomly selected left mediolateral-oblique views. (a) Examples of mammograms triaged as cancer free on test set. (b) 
Examples of mammograms not triaged as cancer free on test set.

concurrently explored in a recent reader study by Rodriguez-
Ruiz et al (24), which used a commercial system and showed 
a simulated workload reduction of 17% with a drop of 1% in 
sensitivity and a noninferior radiologist AUC of 0.05 on an en-
riched data set. In contrast, we showed a workload reduction of 
19%, a noninferior sensitivity, and a significant improvement 
in specificity in a natural screening data set (ie, not enriched). 
Our results are qualitatively similar and support the same hy-
pothesis through different methods.

Our DL model produces a probability of cancer, and al-
though we identified a threshold to triage mammograms as 
cancer free, our model could be leveraged in a diversity of other 
paradigms with different thresholds. In Europe, where double 
reading is more common (18,19), our model could identify a 
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in the United States, with 
current average recall rates 
estimated above 10%, and 
ranging widely among U.S. 
radiologists from 3.4% to 
30.7% (11). False-positive 
results are associated with 
unnecessary additional 
testing and biopsies, and 
are estimated to add more 
than $2.8 billion annually 
to health care costs in the 
United States alone (25). 
The clinical significance of 
the improved specificity of 
the model has considerable 
impact on both patients and 
health care systems.

Our study had several 
limitations. First, our 
analysis of the poten-
tial impact of using the 
model to triage mammo-
grams was retrospective 
and assumed that radi-
ologists would have read 
the remaining images the 
same way, whether those 
marked as cancer free 
were included in their 
routine worklist or not. 
This simulation method is only able to show a decrease 
in sensitivity or an increase in specificity. It is possible the 
knowledge of risk assessment of the mammogram and/or a 
reduced workload could improve radiologist sensitivity and/
or harm the specificity of interpretations of the remaining 
mammograms. It is also possible that reading in a popula-
tion with higher incidence of cancer (because a large frac-
tion of noncancers were triaged) in itself will impact reading 
performance. Although our preliminary results are promis-
ing, a prospective trial is needed to confirm the impact of 
our model in clinical practice across a diversity of radiolo-
gists. Moreover, our model was developed at a single ter-
tiary academic institution. Further external validation with 
diverse populations will be required prior to regulatory ap-
proval and widespread clinical implementation. Lastly, our 
model was developed and tested by using mammograms 
from a single vendor (Hologic) and more study is needed 
to determine the performance of our model in examinations 
obtained with mammography units from diverse vendors. 
To this end, we make our code and trained model available 
for research use at http://learningtocure.csail.mit.edu.

In summary, we developed a deep learning model to triage 
mammograms as cancer free and showed that our model could 
improve radiologist efficiency and specificity without harming 
sensitivity. This work is a first step to using deep learning to tri-
age mammograms in routine clinical care.
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